Вычисление скорости света. Как измеряли скорость света и каково ее реальное значение. Прямолинейное распространение света

Скорость света в вакууме - абсолютная величина скорости распространения электромагнитных волн в вакууме. В физике обозначается латинской буквой c .
Скорость света в вакууме - фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта .
По определению она составляет ровно 299 792 458 м/с (приближенное значение 300 тыс. км/c) .
Согласно специальной теории относительности, является максимальной скоростью для распространения любых физических взаимодействий, передающих энергию и информацию .

Как определили скорость света

Впервые скорость света определил в 1676 О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера.

В 1728 её установил Дж. Брадлей , исходя из своих наблюдений аберрации света звёзд.

В 1849 А. И. Л. Физо первым измерил скорость света по времени прохождения светом точно известного расстояния (базы); т. к. показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину, весьма близкую к с.
В опыте Физо пучок света от источника S, отражённый полупрозрачным зеркалом N, периодически прерывался вращающимся зубчатым диском W, проходил базу MN (ок. 8 км) и, отразившись от зеркала М, возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр Е. По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение с = 313300 км/с.

В 1862 Ж. Б. Л. Фуко реализовал высказанную в 1838 идею Д. Араго, применив вместо зубчатого диска быстровращающееся (512 об/с) зеркало. Отражаясь от зеркала, пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на некоторый малый угол. При базе всего в 20 м Фуко нашёл, что скорость света равна 29800080 ± 500 км/с. Схемы и основные идеи опытов Физо и Фуко были многократно использованы в последующих работах по определению с.

Несмотря на то что в обычной жизни рассчитывать скорость света нам не приходится, многих эта величина интересует с детского возраста.

Наблюдая за молнией во время грозы, наверняка каждый ребенок пытался понять, с чем связана задержка между ее вспышкой и громовыми раскатами. Очевидно, что свет и звук имеют разную скорость. Почему так происходит? Что такое скорость света и каким образом ее можно измерить?

В науке скоростью света называют быстроту перемещения лучей в воздушном пространстве или вакууме. Свет – это электромагнитное излучение, которое воспринимает глаз человека. Он способен передвигаться в любой среде, что оказывает прямое влияние на его скорость.

Попытки измерить эту величину предпринимались с давних времен. Ученые античной эпохи полагали, что скорость света является бесконечной. Такое же мнение высказывали и физики XVI–XVII веков, хотя уже тогда некоторые исследователи, такие как Роберт Гук и Галилео Галлилей, допускали конечность .

Серьезный прорыв в изучении скорости света произошел благодаря датскому астроному Олафу Ремеру, который первым обратил внимание на запаздывание затмения спутника Юпитера Ио по сравнению с первичными расчетами.

Тогда ученый определил примерное значение скорости, равное 220 тысячам метров в секунду. Более точно эту величину сумел вычислить британский астроном Джеймс Бредли, хотя и он слегка ошибся в расчетах.


В дальнейшем попытки рассчитать реальную скорость света предпринимали ученые из разных стран. Однако только в начале 1970-х годов с появлением лазеров и мазеров, имевших стабильную частоту излучения, исследователям удалось сделать точный расчет, а в 1983 году за основу было принято современное значение с корреляцией на относительную погрешность.

Что такое скорость света своими словами?

Если говорить простым языком, скорость света – это время, за которое солнечный луч преодолевает определенное расстояние. В качестве единицы времени принято использовать секунду, в качестве расстояния – метр. С точки зрения физики свет – это уникальное явление, имеющее в конкретной среде постоянную скорость.

Предположим, человек бежит со скоростью 25 км/час и пытается догнать автомобиль, который едет со скоростью 26 км/час. Выходит, что машина движется на 1 км/час быстрее бегуна. Со светом всё обстоит иначе. Независимо от быстроты передвижения автомобиля и человека, луч всегда будет передвигаться относительно них с неизменной скоростью.

Скорость света во многом зависит от вещества, в котором распространяются лучи. В вакууме она имеет постоянное значение, а вот в прозрачной среде может иметь различные показатели.

В воздухе или воде ее величина всегда меньше, чем в вакууме. К примеру, в реках и океанах скорость света составляет порядка ¾ от скорости в космосе, а в воздухе при давлении в 1 атмосферу – на 2 % меньше, чем в вакууме.


Подобное явление объясняется поглощением лучей в прозрачном пространстве и их повторным излучением заряженными частицами. Эффект называют рефракцией и активно используют при изготовлении телескопов, биноклей и другой оптической техники.

Если рассматривать конкретные вещества, то в дистиллированной воде скорость света составляет 226 тысяч километров в секунду, в оптическом стекле – около 196 тысяч километров в секунду.

Чему равна скорость света в вакууме?

В вакууме скорость света в секунду имеет постоянное значение в 299 792 458 метров, то есть немногим больше 299 тысяч километров. В современном представлении она является предельной. Иными словами, никакая частица, никакое небесное тело не способны достичь той скорости, какую развивает свет в космическом пространстве.

Даже если предположить, что появится Супермен, который будет лететь с огромной скоростью, луч все равно будет убегать от него с большей быстротой.

Хотя скорость света является максимально достижимой в вакуумном пространстве, считается, что существуют объекты, которые движутся быстрее.

На такое способны, к примеру, солнечные зайчики, тень или фазы колебания в волнах, но с одной оговоркой – даже если они разовьют сверхскорость, энергия и информация будут передаваться в направлении, которое не совпадает направлением их движения.


Что касается прозрачной среды, то на Земле существуют объекты, которые вполне способны двигаться быстрее света. К примеру, если луч, проходящий через стекло, замедляет свою скорость, то электроны не ограничены в быстроте передвижения, поэтому при прохождении через стеклянные поверхности могут перемещаться быстрее света.

Такое явление называется эффект Вавилова – Черенкова и чаще всего наблюдается в ядерных реакторах или в глубинах океанов.

В 1676 датский астроном Оле Рёмер сделал первую грубую оценку скорости света. Рёмер заметил слабое расхождение в продолжительности затмений спутников Юпитера и сделал вывод, что движение Земли, либо приближающейся к Юпитеру, либо удаляющейся от него, изменяло расстояние, которое приходилось проходить свету, отраженному от спутников.

Измерив величину этого расхождения, Рёмер подсчитал, что скорость света составляет 219911 километров в секунду. В более позднем эксперименте в 1849 году французский физик Арман Физо получил, что скорость света равна 312873 километрам в секунду.

Как показано на рисунке вверху, экспериментальная установка Физо состояла из источника света, полупрозрачного зеркала, которое отражает только половину падающего на него света, позволяя остальному проходить дальше вращающегося зубчатого колеса и неподвижного зеркала. Когда свет попадал на полупрозрачное зеркало, он отражался на зубчатое колесо, которое разделяло свет на пучки. Пройдя через систему фокусирующих линз, каждый световой пучок отражался от неподвижного зеркала и возвращался назад к зубчатому колесу. Проведя точные измерения скорости вращения, при которой зубчатое колесо блокировало отраженные пучки, Физо смог вычислить скорость света. Его коллега Жан Фуко год спустя усовершенствовал этот метод и получил, что скорость света составляет 297 878 километров в секунду. Это значение мало отличается от современной величины 299 792 километров в секунду, которая вычисляется путем перемножения длины волны и частоты лазерного излучения.

Эксперимент Физо

Как показано на рисунках вверху, свет проходит вперед и возвращается назад через один и тот же промежуток между зубцами колеса в том случае, если оно вращается медленно (нижний рисунок). Если колесо вращается быстро (верхний рисунок), соседний зубец блокирует возвращающийся свет.

Результаты Физо

Разместив зеркало на расстоянии 8,64 километра от зубчатого колеса, Физо определил, что скорость вращения зубчатого колеса, необходимая для блокирования возвращающегося светового пучка, составляла 12,6 оборотов в секунду. Зная эти цифры, а также расстояние, пройденное светом, и расстояние, которое должно было пройти зубчатое колесо, чтобы блокировать световой пучок (равное ширине промежутка между зубцами колеса), он вычислил, что световому пучку потребовалось 0,000055 секунды на то, чтобы пройти расстояние от зубчатого колеса к зеркалу и обратно. Разделив на это время общее расстояние 17,28 километра, пройденное светом, Физо получил для его скорости значение 312873 километра в секунду.

Эксперимент Фуко

В 1850 году французский физик Жан Фуко усовершенствовал технику Физо, заменив зубчатое колесо на вращающееся зеркало. Свет из источника доходил до наблюдателя только в том случае, когда зеркало совершало полный оборот на 360° за промежуток времени между отправлением и возвращением светового луча. Используя этот метод, Фуко получил для скорости света значение 297878 километров в секунду.

Финальный аккорд в измерениях скорости света.

Изобретение лазеров дало возможность физикам измерить скорость света с гораздо большей точностью, чем когда либо раньше. В 1972 году ученые из Национального института стандартов и технологии тщательно измерили длину волны и частоту лазерного луча и зафиксировали скорость света, произведение этих двух переменных, на величине 299792458 метров в секунду (186282 мили в секунду). Одним из последствий этого нового измерения было решение Генеральной конференции мер и весов принять в качестве эталонного метра (3,3 фута) расстояние, которое свет проходит за 1/299792458 секунды. Таким образом/скорость света, наиболее важная фундаментальная постоянная в физике, сейчас вычисляется с очень высокой достоверностью, а эталонный метр может быть определен гораздо более точно, чем когда-либо ранее.

В давние времена многие ученые считали скорость света бесконечной. Итальянский физик Галилео Галилей был одним из первых, кто попробовал ее измерить.

Первые попытки

В начале XVII столетия Галилей предпринял эксперимент, состоявший в том, что два человека с прикрытыми фонарями стояли на известном расстоянии друг от друга. Один человек подавал свет, и как только другой его видел, он раскрыл свой собственный фонарь. Галилей попытался записывать время между вспышками, но затея оказалась неудачной по причине слишком малого расстояния. Скорость света не могла быть измерена таким способом.

В 1676 году датский астроном Оле Ремер стал первым человеком, доказавшим, что свет распространяется с конечной скоростью. Он изучал затмения спутников Юпитера и заметил, что они происходят раньше или позже, чем ожидалось по расчетам (раньше, когда Земля ближе к Юпитеру, и позже, когда Земля дальше). Румер логично предположил, что запаздывание обусловлено временем, необходимым на преодоление расстояния.

На современном этапе

В последующие столетия ряд ученых работал над определением скорости света с использованием усовершенствованных приборов, изобретая все более точные методы расчетов. Французский физик Ипполит Физо произвел в 1849 году первые неастрономические измерения. В использованной методике применено вращающееся зубчатое колесо, через которое пропускался свет, и система зеркал, расположенная на значительном удалении.

Более точные расчеты скорости сделаны в 1920-е годы. Эксперименты американского физика Альберта Майкельсона проходили в горах Южной Калифорнии с применением восьмигранного вращающегося зеркального аппарата. В 1983 году Международная комиссия по мерам и весам официально признала величину скорости света в вакууме, которую сегодня применяют при расчетах все ученые мира. Она составляет 299 792 458 м/с (186,282 миль/сек). Таким образом, за одну секунду свет преодолевает расстояние, равное экватору Земли 7,5 раз.

Скорость света в вакууме составляет «ровно 299,792,458 метров в секунду». Мы сегодня можем с точностью назвать эту цифру потому, что скорость света в вакууме является универсальной постоянной, которая была измерена при помощи лазера.

Когда речь идет об использовании данного инструмента в эксперименте, трудно поспорить с результатами. По поводу того, почему скорость света измеряется настолько целым числом, можно сказать, что это и неудивительно: длина метра определяется с помощью следующей константы: «Длина пути, проходимого светом в вакууме за промежуток времени 1/299,792,458 секунды».

Пару сотен лет назад было решено или, по крайней мере, предполагалось, что скорость света не имеет предела, хотя на самом деле она просто очень высока. Если бы от ответа зависело, станет ли она подругой Джастина Бибера, современная девушка-подросток ответила бы на этот вопрос так: «Скорость света чуть медленнее самой быстрой вещи во Вселенной».

Первым, кто обратился к вопросу о бесконечности скорости света, был философ Эмпедокл в пятом веке до н.э. Еще спустя столетие Аристотель не согласится с утверждением Эмпедокла, и спор будет длиться еще более 2,000 лет.

Голландский ученый Иссак Бэкмен был первым известным специалистом, кто в 1629 году придумал реальный эксперимент, чтобы проверить, есть ли у света какая-либо скорость. Живущий в столетии, далеком от изобретения лазера, Бэкмен понял, что основой эксперимента должен стать взрыв любого происхождения, поэтому в своих экспериментах он использовал детонирующий порох.

Бэкмен расположил зеркала на разном расстоянии от места взрыва и позже спросил у наблюдавших людей, видят ли они разницу в восприятии вспышки света, отражающейся в каждом из зеркал. Как можно догадаться, эксперимент был "неубедительным". Аналогичный, более известный опыт, но без использования взрыва, возможно, был проведен или, по крайней мере, придуман Галилео Галилеем только десятилетие спустя, в 1638 году. Галилей, как и Бэкмен, подозревал, что скорость света не бесконечна, и в некоторых своих работах делал ссылку на продолжение эксперимента, но уже с участием фонарей. В своем эксперименте (если он когда-либо его проводил!) он разместил два фонаря в миле друг от друга и пытался разглядеть, была ли задержка. Результат эксперимента тоже был неубедительным. Единственное, что Галилей смог предположить, так это, что если свет и не был бесконечным, то он был слишком быстрым, и опыты, проводимые в таком маленьком масштабе, были обречены на провал.

Так продолжалось до тех пор, пока к серьезным экспериментам со скоростью света не приступил датский астроном Олаф Ремер. Эксперименты с фонарями на холме, проводимые Галилеем, выглядели как научный проект школьника по сравнению с опытами Ремера. Он установил, что эксперимент должен проводиться в открытом космосе. Таким образом, он сосредоточил свое внимание на наблюдении за планетами и представил свои новаторские взгляды 22 августа 1676 года.

В частности, во время изучения одного из спутников Юпитера Ремер заметил, что время между затмениями изменяется в течение года (в зависимости от того, движется Юпитер в направлении Земли или от нее). Заинтересовавшись этим, Ремер делал тщательные записи о времени, когда спутник Ио, за которым он наблюдал, появлялся в поле зрения, и сравнивал, как это время соотносилось с моментом, когда он обычно ожидался. Через некоторое время Ремер заметил, что так же, как Земля, вращаясь вокруг Солнца, становится дальше от Юпитера, время, когда Ио попадает в поле зрения, будет сильнее отставать от времени, отмеченного ранее в записях. Ремер (правильно) предположил, что это происходит из-за того, что свету необходимо больше времени, чтобы пройти расстояние от Земли до Юпитера, если само расстояние увеличивается.

К сожалению, произведенные им расчеты погибли в огне во время пожара в Копенгагене в 1728 году, но у нас есть большой объем сведений о его открытии из историй современников, а также из докладов других ученых, использовавших расчеты Ремера в своих работах. Суть их в том, что с помощью многих расчетов, связанных с диаметром Земли и орбиты Юпитера, Ремер смог сделать вывод, что свету потребуется около 22 минут, чтобы пройти расстояние, равное диаметру орбиты Земли вокруг Солнца. Христиан Гюйгенс позже преобразует эти вычисления в более понятные цифры, показывая, что, по оценке Ремера, свет проходит около 220,000 километров в секунду. Эта цифра еще намного отличается от современных данных, но мы вскоре к ним вернемся.

Когда коллеги Ремера по университету выразили озабоченность по поводу его теории, он спокойно ответил им, что затмение 9 ноября 1676 года произойдет на 10 минут позднее. Когда так и случилось, сомневающиеся были поражены, ведь небесное тело подтвердило его теорию.

Коллеги Ремера были крайне изумлены его вычислениям, так как даже сегодня его оценка скорости света считается удивительно точной, учитывая, что она была сделана за 300 лет до того, как придумали лазеры и Интернет. И пусть 80,000 километров – это слишком медленно, но, беря во внимание состояние науки и технологий в то время, результат действительно впечатляет. К тому же Ремер полагался лишь на собственные догадки.

Что еще более удивляет, причина слишком маленькой скорости была не в расчетах Ремера, а в том, что не было точных данных об орбитах Земли и Юпитера в то время, когда он проводил свои вычисления. Это означает, что ученый ошибся только потому, что другие ученые были не так умны, как он. Так что, если вы поместите существующие современные данные в оригинальные вычисления, которые он проводил, расчеты скорости света будут верными.

И хотя вычисления были технически неправильными, а Джеймс Брэдли нашел более точное определение скорости света в 1729 году, Ремер вошел в историю как человек, доказавший первым, что скорость света можно определить. Он сделал это, наблюдая за движением гигантского газообразного шара, расположенного на расстоянии около 780 миллионов километров от Земли.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: